
1

Parallel Learning of Large-scale Multi-Label
Classification Problems with

Min-Max Modular LIBLINEAR
Yangyang Chen, Bao-Liang Lu* Senior Member, IEEE and Hai Zhao

Abstract—The study on pattern classification trends to be
towards large-scale, multi-label, and imbalanced problems. The
amount of the data which need to be classified is typically dozens
of millions and it keeps rapid increasing in recent years. Tradi-
tional pattern classification approaches are inefficient and even
ineffective in this situation. In our previous work, we proposed
a min-max modular (M3) network for dealing with large-scale
and imbalanced problems. M3-network is a generalized modular
learning framework and includes three main steps: decomposing
a large-scale problem into several smaller independent sub-
problems, learning these sub-problems in parallel, and combining
the results of the sub-problems to generate a solution to the
original problem. In this paper, we embed LIBLINEAR into
M3-network (M3-liblnear) to deal with large-scale, multi-label,
and imbanlanced pattern classification problems. LIBLINEAR
is a fast implementation of a linear classifier. M3-Liblinear
uses LIBLINEAR as a base classifier to learn each of the sub-
problems. We compare M3-Liblinear with Liblinear-cdblock on a
large-scale Japanese patent classification problem. Experimental
results demonstrate that M3-Liblinear is superior to Liblinear-
cdblock in both training time and generalization performance.

Index Terms—Min-max modular network, Liblinear-cdblock,
multi-label problem, imbalanced problem.

I. INTRODUCTION

Nowadays many real-world pattern classification problems
involve large-scale, multi-label, and imbalanced data sets. Tra-
ditional pattern classifiers will slow down or even be useless if
the scale of the data is extremely large and exceeds the limits
of the currently available hardware. On one hand, during the
training, the data will have to be frequently exchanged between
memory and disk and the training time will rapidly increase
due to the disk being frequently read and written [14]. On the
other hand, the imbalance of categories in the data will cause
an extra reduction of the predicting accuracy. The performance
on predicting rare classes is usually very low.

In this paper, a min-max modular (M3) network is in-
troduced to handle the above two difficulties. M3-network
is originally proposed to be a generalized framework to
deal with large-scale and imbalanced pattern classification
problems [1]. The M3-network framework is based on the

This work was partially supported by the National Basic Research Program
of China (Grant No. 2009CB320901) and the European Union Seventh
Framework Programme (Grant No. 247619).

Y. Chen, B. L. Lu and H. Zhao are with the Department of Computer
Science and Engineering and MOE-Microsoft Key Laboratory for Intelligent
Computing and Intelligent Systems, Shanghai Jiao Tong University, 800
Dong Chuan Rd., Shanghai 200240, China. *Corresponding author (e-mail:
blu@cs.sjtu.edu.cn)

divide-and-conquer strategy. By decomposing a large-scale
problem into many much smaller independent sub-problems
and training all of the sub-problems in a massively parallel
way, we can quickly solve large-scale problems. By selecting
a proper decomposition strategy which makes the sizes of sub-
problems equal, influence of the imbalance can be effectively
reduced.

In this study, we embed LIBLINEAR into min-max modular
network (M3-Liblinear) to deal with large-scale, multi-label,
and imbalanced problems. LIBLINEAR is a fast implementa-
tion of a linear classifier for training data sets with millions of
instances and features [13]. According to the work in [13],
[14], LIBLINEAR may perform better than support vector
machines (SVMs) when the number of instances and features
in the training data is large. M3-Liblinear uses LIBLINEAR
as a base classifier to learn each of the sub-problems.

In this paper, we evaluate the performance of M3-Liblinear
in a systemic way and compare it with another extension of
LIBLINEAR, Liblinear-cdblock [13], [14]. The main advan-
tage of M3-Liblinear over normal LIBLINEAR and Liblinear-
cdblock is that a large-scale problem can be solved more
efficiently.

The rest of the paper is organized as follows. In sec-
tion II, M3-Liblinear is briefly introduced. In section III, two
decomposition strategies are introduced. In section IV, we
perform experiments on a binary problem and a multi-label
problem, and compare M3-Liblinear with Liblinear-cdblock.
In section V, the conclusions are drawn.

II. MIN-MAX MODULAR LIBLINEAR

A problem with K-class can be divided into K binary
problems according to the ‘one versus rest’ method or be
divided into K(K − 1)/2 binary problems according to the
‘one versus one’ method. Consequently, a K-class problem
can be conveniently converted into several binary problems.
Thus we will only focus on binary classification in this section.

Min-max modular Liblinear includes three steps: task de-
composition, independent or parallel Liblinear training and
module combination.

A. Task Decomposition

The decomposition of M3-Liblinear adopts a “part versus
part” strategy.

Let
D = {(x, y)|x ∈ Rd, y ∈ {+1,−1}}

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IJCNN

2

be the training data set of a binary classification, where
(x, y) is the sample of D, x is the feature vector in a d-
dimensional space, and y is the label of x. Since this is a
binary classification, y will be either +1 or −1.

Let
D+ = {(x, y) ∈ D|y = +1}

denote the positive training data set of D and

D− = {(x, y) ∈ D|y = −1}

denote the negative training data set.
The first step of task decomposition is dividing the positive

training data set D+ into N+ data sets D+
i (i = 1, ..., N+) and

dividing the negative training data D− set into N− data sets
D−

j (j = 1, ..., N−). The detailed decomposition strategies
will be discussed later. To obtain balanced sub-problems, we
require |D+

i | ≈ |D
−
j | for i = 1, ..., N+ and j = 1, ..., N−.

The second step is concatenating each D+
i and D−

j to obtain
a sub-problem Dij :

Dij = D+
i ∪D−

j , i = 1, ..., N+, j = 1, ..., N−

Hence we get N+ ×N− sub-problems.

B. Training Liblinear in Parallel
After the task decomposition, the training data set has been

divided into N+×N− sub-problems. Since the sub-problems
are independent, they can be trained independently. In M3-
Liblinear, LIBLINEAR is used to solve the sub-problems.
After solving the sub-problems, we obtain the following
N+ ×N− trained modules:

Dij
LIBLINEAR−−−−−−−−−→Mij

Here Mij is the module trained from Dij .

C. Module Combination
Two module combination principles, the minimization prin-

ciple and the maximization principle, are used for M3-
Liblinear to integrate the outputs of trained modules into a
solution to the original problem.

After training, we get N+ × N− modules. Assume that
(xt, yt) is a test sample. Predict this sample according to
each module Mij and get N+ × N− predictions (pij for
i = 1, · · · , N+ and j = 1, · · · , N−).

(xt, yt)
Mij−−→ pij

For any j = 1, · · · , N−, prediction pij has been trained
on the same positive training data set D+

i and on different
negative training data sets. These predictions are combined
according to the minimization principle.

1) Minimization principle: The predictions that come from
modules which have the same positive training data sets are
combined by choosing the minimum prediction as the output.

pi = min
j=1,...,N−

pij

For any i = 1, · · · , N+, prediction pi has been made on the
same negative training data set D− and on different positive
training data sets. These predictions are combined according
to the maximization principle.

2) Maximization principle: The predictions that come from
the modules which have the same negative training data sets
are combined by choosing the maximum prediction as the
output.

p = max
i=1,...,N+

pi

Figure 1 shows the structure of M3-Liblinear.

Fig. 1. The structure of M3-Liblinear

In the situation of binary classification, the predictions
belong to either positive class or negative class. Note that we
have assumed that the positive label is +1 and the negative
label is −1. The minimization principle is used to determine
the negative class. If there exists a −1 in the inputs of Min
unit, the output will be −1. The maximization principle is
used to determine the positive class. If there exists a +1 in
the inputs of Max unit, the output will be +1.

pi =

{
+1 , if pij = +1 for all j
−1 , otherwise

(1)

p =

{
+1 , if there exists a i for which pi = +1

−1 , otherwise
(2)

Another strategy of module combination is combination
using an assistant classifier [8]. This strategy is based on meta-
learning [21]. The main idea is using a specified classifier
instead of minimization principle and maximization principle
to integrate the outputs into a solution to the original problem.
In min-max combination principles, the outputs are treated as
a matrix {pij}. In the strategy of module combination using
an assistant classifier, the outputs are treated as a N+ ×N−-
dimension vector (p11, p12, p13, ..., pN+N−). In the training
phase, an assistant classifier will also be trained using the
N+ × N− outputs of the base classifiers while training the
modules. In the predicting phase, the outputs of the testing
sample are treated as a N+ × N−-dimension vector and the

3

assistant classifier takes this vector as input to produce the
final result.

III. TASK DECOMPOSITION STRATEGIES

Task decomposition strategy is important to the perfor-
mance of M3-Liblinear. Since M3-Liblinear does not provide
a specific task decomposition strategy, the decomposition
strategy can be freely chosen. However, choosing different task
decomposition strategies will strongly affect the performance
of M3-Liblinear. In this section, we introduce two typical task
decomposition strategies.

A. Random Task Decomposition

Random task decomposition is the simplest and most s-
traightforward strategy. Assume that the task will be divided
into N sub-problems. Then for each sample in the task, assign
it randomly to one of the N sub-problems. According to the
law of large numbers in probability theory, the sizes of the
sub-problems will be nearly equal and the sub-problems will
automatically be balanced. Random task decomposition is easy
to implement and it is efficient. This strategy is simple but it
doesn’t mean that this strategy will not perform well. In fact,
if the size of data set is large enough, the distribution of the
samples in each sub-problem will be similar to the distribution
of the original problem.

In the M3 framework, according to the min-max com-
bination principles, M3-Liblinear will perform better if the
samples of the same sub-problem are closer in the feature
space. However, the samples of the sub-problem are usually
scattered after random task decomposition so that is not always
an appropriate strategy.

B. CLASS Task Decomposition

In CLASS task decomposition, the data set will be di-
vided into subclasses. Subsets which have been divided by
CLASS decomposition are closer to the reality. In our previous
work [9], we have shown that the CLASS decomposition
strategy is better than other methods.

Figure 2 illustrates the difference between M3-Liblinear
with random task decomposition and M3-Liblinear with
CLASS task decomposition. In the binary classification, the
positive class or the negative class usually is made by several
subclasses or even hierarchical subclasses. A binary problem
converted from a multi-class problem by the “one versus rest”
method is such an example. Generally, the distance between
a subclass of the positive class and a subclass of the negative
class is longer than the distance between the positive class and
the negative class. So the performance of a linear classifier
between a subclass of the positive class and a subclass of
the negative class is better than the same linear classifier
between the positive class and the negative class. In random
task decomposition, the module is an epitome of the original
data set. As shown in Fig. 2(a), the base classifiers are similar
and the combination of them is still a linear classifier which
will not perform well near the boundary of the hyperplane.

Figure 2(b) shows how M3-Liblinear with CLASS task
decomposition works. The positive class has a subclass circle

(a) M3-Liblinear with random
task decomposition

(b) M3-Liblinear with CLASS
task decomposition

Fig. 2. Examples to show the difference between random task decomposition
and CLASS task decomposition. Assume that the circles are the positive class
and the squares and the triangles are subclasses of the negative class.

and the negative class has subclasses square and triangle.
CLASS task decomposition divides this problem into two sub-
problems (one between circle and square and the other one
between circle and triangle). Train these sub-problems and we
obtain two linear base classifiers. The functions of these base
classifiers are different (one is used to separate the circles and
the squares and the is other used to separate the circles and
the triangles) and so are their hyper-planes. The combination
is a surface which tends to encircle the positive class.

A problem of CLASS task decomposition is that it is hard
to control the size of the module accurately. Hence the sub-
problem may still be an imbalanced problem. By merging
the small subclasses which belong to the same subclass and
splitting the large subclass randomly, we reduce the rate of
imbalance below 2 to 1. In this situation, the influence of
imbalance is small. The CLASS task decomposition strategy
is described in Algorithm 1.

Algorithm 1 Algorithm for CLASS task decomposition
Input: modulesize, D(data set), S(a set of the subset to be

split)
Output: T (a set of the split subsets)

S ← {D}
T ← ∅
while S is not empty do

for each element E ∈ S do
remove E from S
if |E| is much larger than modulesize then

if E has subclasses then
split E by taxonomy

else
split E randomly

end if
add the subclasses of E to S

else
add E to T

end if
end for

end while
merge the sets whose size are much smaller than
modulesize

4

IV. EXPERIMENTS

In this section, we carry out two groups of experiments
to evaluate the proposed M3-Liblinear. The data sets used
for these experiments are large-scale, multi-label, imbalanced
Japanese patent classification data. The first group of ex-
periments about binary patent classification compares M3-
Liblinear with standard LIBLINEAR and demonstrates how
the module size and module combination strategies affect the
performance of pattern classifiers. The second group on multi-
label patent classification examines the performance of M3-
Liblinear for solving multi-label problems.

A. Data Set

The data set for the experiments is collected from the
NTCIR-5 patent data set [19]. As shown in Fig. 3, NTCIR-5
is a hierarchical multi-label data set. There are four layers of
labels in NTCIR-5. These four layers are SECTION, CLASS,
SUBCLASS, and GROUP. In our experiments, we use the
SECTION layer only. The SECTION layer contains eight
different labels from A to H. The distribution of samples in
the SECTION layer is listed in Table I.

Fig. 3. Hierarchical labels of the patents

In our experiments, we use the traditional term frequency -
inverse document frequency weight (tf-idf) [20] to index the
text into a vector. After indexing, we have a set of vectors
with 3487511 instances and 1037900 features. The data set is
sparse.

B. Liblinear-cdblock

Since the size of data set is extreme large and LIBLINEAR
cannot solve the problem directly, we use Liblinear-cdblock
to deal with the problem instead. Liblinear-cdblock is an
extension of LIBLINEAR for large data which cannot fit in
memory [14]. Liblinear-cdblock is also a method based on
decomposition. It splits the data set into several smaller parts
and uses online learning algorithms to train each part one by
one. In our experiments, Liblinear-cdblock is adopted as the
baseline.

C. Binary Problem

Experiments on binary problem are divided into two part-
s. The first part is to demonstrate how the module size
and decomposition strategies affect the performance of M3-
Liblinear. The second part is to compare the performance of
M3-Liblinear with different module combination strategies.

We use the ‘one versus rest’ strategy to obtain a binary data
set from NTCIR-5. The samples which belong to label A are
marked as positive and the other samples as negative.

We use the accuracy, precision, recall and F1 score to eval-
uate the performance of the binary classifiers. These metrics
are defined as the follows.

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2×Recall × Precision

Recall + Precision
(3)

where TP is the true positives, FP is the false positives, TN
is the true negatives, and FN is the false negatives.

We randomly take one-tenth of the samples in the binary
data set as the test data set and the rest as the training data
set. The training data set contains 3138356 samples and the
test data set contains 349152. The number of positive samples
in the training data set is 348161 and the number of negative
samples is 2790195. The ratio between positive and negative
samples is about 1 to 8. This problem that we examine is a
large-scale and imbalanced problem. The positive class is the
rare part.

In the first part of the experiments, we use the following
three pattern classifiers.

1) Liblinear-cdblock: We split the training data set into 31
parts in order to make the size of each part about 100,000.
As shown below, the number 100,000 gives a good tradeoff
between performance and training time.

2) M3-Liblinear with random decomposition (M3-random):
We divide the data set with the module size of 100,000.

3) M3-Liblinear with CLASS decomposition (M3-CLASS):
In this method, we perform the experiments in different mod-
ule sizes of 25,000, 50,000, 100,000, 400,000 and 700,000.

The experimental results are shown in Table II. From this
table, we can draw the following conclusions:

• Compare the results among Liblinear-cdblock, M3-
Liblinear with random decomposition, and M3-Liblinear
with CLASS decomposition. M3-Liblinear with CLASS
decomposition gives the best performance. M3-Liblinear
with random decomposition performs almost as well as
Liblinear-cdblock. M3-Liblinear with random decompo-
sition has a higher precision but a lower recall and their
F1 values are almost the same.

• Consider the training time of these three methods. Since
Liblinear-cdblock trains the data set serially, it takes the
longest time to finish the training process. M3-Liblinear
with random decomposition also needs more time for
training than M3-Liblinear with CLASS decomposition.
This phenomenon occurs because the module is scattered
after random decomposition and the classifier will take
more time to reach the ending conditions in this situation.

5

TABLE I
THE DISTRIBUTION OF THE SECTION LAYER

A B C D E F G H
Number of samplers 387083 924773 493338 67549 206806 396991 1121361 1015251

TABLE II
RESULTS FOR BINARY PROBLEM WITH THREE METHODS

Method Accuracy(%) Precision(%) Recall(%) F1(%) Training Time(sec) Predicting Time(sec)
Liblinear-cdblock (31) 96.04 82.80 81.42 82.1 25351 23
M3-random 100000 96.38 89.79 76.22 82.45 426 63

M3-CLASS

25000 97.44 93.39 82.87 87.81 33 116
50000 97.30 93.32 81.64 87.09 70 74

100000 97.09 92.91 80.01 85.98 153 54
400000 96.67 92.08 76.72 83.70 687 51
700000 96.47 90.57 76.32 82.84 3608 53

• As the module size decreases, the training time of M3-
Liblinear with CLASS decomposition decreases but the
predicting time increases. The reason is that M3-Liblinear
needs to merge more results while predicting.

Finger 4 shows the ROC curves of Liblinear-cdblock, M3-
Liblinear with CLASS decomposition and M3-Liblinear with
random decomposition. The finger also indicates that M3-
CLASS performs best and M3-Liblinear with random decom-
position performs almost as well as Liblinear-cdblock.

Fig. 4. The ROC curves of Liblinear-cdblock, M3-Liblinear with CLASS
decomposition and M3-Liblinear with random decomposition

The results in Table II show that M3-Liblinear performs
better when the module size becomes smaller. So we take a
small subset (one tenth) of the training data and conduct more
experiments with small module size. Table III presents the
results of these experiments.

From Table III, we can see that when the module size
decreases from 5000 to 2500, the performance becomes worse.

The next experiment compares the performance of M3-
Liblinear with different module combination methods. Ta-

TABLE III
RESULTS FOR BINARY PROBLEM WITH DIFFERENT MODULE SIZES

Module Size Accuracy (%) Precision (%) Recall (%) F1 (%)
2500 96.38 91.24 72.90 81.04
5000 96.60 91.47 74.97 82.40

10000 96.23 90.52 72.02 80.22
50000 95.84 89.49 68.85 77.83

ble IV shows the results. M3-MMCP is short for M3-Liblinear
with min-max combination principle. M3-ACMSSL is short
for M3-Liblinear with Libinear as an assistant classifier. M3-
ACMSSS is short for M3-Liblinear with an assistant classifier
using a support vector machine with a radial basis function as
its kernel. The module size is 100,000. The number of positive
modules is 7 and the number of negative modules is 92. Hence
the input vector for the assistant classifier has 644 dimensions.

As shown in Table IV, M3-ACMSSL provides the worst
result and the performance of M3-ACMSSS is also not good.
The reason for the bad performance of M3-ACMSSL is that
the classification of module combinations is not a linear clas-
sification but Liblinear is a linear classifier. So M3-ACMSSL
cannot combine the outputs correctly. As for M3-ACMSSS,
the dimension of the input vector for the assistant classifier is
too large. The classification of module combinations become a
very complex nonlinear classification. So M3-ACMSSS cannot
perform well.

We use a smaller training data set and try the experiments
again. This time the number of positive modules is 1 and the
number of negative modules is 19. Hence the input vector
for assistant classifier has 19 dimensions. Table V shows the
results.

TABLE V
RESULTS FOR SMALLER TRAINING DATA SET

Acc. (%) Precision (%) Recall (%) F1 (%)
Liblinear-cdblock 87.92 45.10 63.93 52.89

M3-MMCP 95.84 68.85 89.49 77.83
M3-ACMSSL 81.05 35.15 93.11 51.03
M3-ACMSSS 95.84 88.94 69.40 77.96

As the results shows, M3-ACMSSL is also not good and
M3-ACMSSS is a little better than M3-MMCP in the case of
lower dimension.

6

TABLE IV
RESULTS FOR LIBLINEAR-CDBLOCK AND M3-LIBLINEAR WITH DIFFERENT MODULE COMBINATION STRATEGIES

Accuracy (%) Precision (%) Recall (%) F1 (%)
Liblinear-cdblock 96.04 82.80 81.42 82.1

M3-MMCP 97.09 92.91 80.01 85.98
M3-ACMSSL 86.63 45.08 91.34 60.36
M3-ACMSSS 94.85 69.88 94.58 80.37

D. Multi-Label Problem

A straightforward way to deal with multi-label pattern
classification problem is to train classifiers for each label [16].
We just consider the SECTION layer of NTCIR-5 and there
are eight labels in the SECTION layer. So eight classifiers
are necessary. Before showing the results, we introduce the
evaluation metrics for multi-label problems.

In a multi-label problem, a sample can have more than one
label so the output is not one label but a set of labels. Assume
that the test data set is D with element (xi, Yi) where xi is
the sample and Yi is the labels for xi. Denote the output of a
specified multi-label classifier as Zi. The accuracy, precision,
and recall are defined as follows.

Accuracy =
1

|D|

|D|∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

(4)

Precision =
1

|D|

|D|∑
i=1

|Yi ∩ Zi|
|Zi|

(5)

Recall =
1

|D|

|D|∑
i=1

|Yi ∩ Zi|
|Yi|

(6)

The F1 score is defined in the formula (3).
In this experiment, we use the accuracy, precision, recall

and Fi score to evaluate the performance. The methods that
we use are Liblinear-cdblock and M3-Liblinear with CLASS
decomposition. The module size is 100000. We randomly take
one-tenth of the samples in the data set as testing data and the
rest as training data. Then we use ‘the ‘one versus rest” method
to convert the multi-label data set into eight binary data sets.
And we train eight Liblinear-cdblock models and eight M3-
Liblinear models for the binary data sets. Table VI presents
the results of these classifiers. From Table VI, we can see that
the precision of M3-Liblinear is much higher than Liblinear-
cdblock and the recall is at the same level. Table VII shows
the results for the multi-label problem.

TABLE VII
RESULTS OF MULTI-LABEL PROBLEM

Acc. (%) Precision (%) Recall (%) F1 (%)
Liblinear-cdblock 58.31 71.16 76.01 73.50

M3-Liblinear 68.86 84.34 75.77 79.82

As shown in Table VII, M3-Liblinear outperforms Liblinear-
cdblock. Generally speaking, the ‘one versus rest’ method
results in imbalanced binary problems. So the eight binary
sub-problems in this experiment are imbalanced. As shown in
the binary problem experiment, the precision of M3-Liblinear
is much higher than Liblinear-cdblock in the situation of

imbalanced binary problems. So in the situation where the
multi-label problem is converted into binary sub-problems by
‘one versus rest’, the performance of M3-Liblinear is also
better.

V. CONCLUSIONS

In this paper, M3-Liblinear is introduced to address large-
scale and imbalanced multi-label problems. M3-Liblinear pro-
vides better performance than Liblinear-cdblock for both bi-
nary problems and multi-label problems. We also compare
two typical task decomposition strategies for M3-Liblinear,
CLASS task decomposition and random task decomposition.
The results show that M3 with the former decomposition
strategy is more efficient and effective than the latter. By
presenting M3-Liblinear with different module sizes, we can
conclude that the training time increases and the predicting
time decreases as the module size increases. As future work,
we will explore the method to solve the hierarchical and multi-
label classification.

REFERENCES

[1] Lu, B.L. and Ito, M, “Task Decomposition Based on Class Relations: a
Modular Neural N etwork Architecture for Pattern Classification,” IEEE
Transactions on Neural Networks, vol. 10, no. 5,pp 1244-1256, 1999.

[2] B. L. Lu, K. A. Wang, M. Utiyama, and H. Isahara, “A part-versus-
part method for massively parallel training of support vector machines,”
Proceedings of IEEE/INNS International Joint Conference on Neural
Networks, pp. 735-740, 2004.

[3] Ken Chen, Bao-Liang Lu and Kwok, J.T, “Efficient Classification of
Multi-label and Imbalanced Data using Min-Max Modular Classifiers,”
Proc. of IEEE/INNS International Joint Conference on Neural Networks,
pp. 1770-1775, 2006.

[4] Fan, Z.G. and Lu, B.L, “Multi-view face recognition with min-max
modular SVMs,” Lecture Notes in Computer Science, Springer, vol. 3611,
pp. 396-401, 2005.

[5] Lu B, Ma Q, Ichikawa M, et al, “Efficient Part-of-Speech Tagging with a
Min-Max Modular Neural-Network Model,” Applied Intelligence, 2003,
19(1):65-81.

[6] B. L. Lu, X. L. Wang, Y. Yang, and H. Zhao, “Learning from Imbalanced
Data Sets with a Min-max Modular Support Vector Machine,” Frontiers of
Electrical and Electronic Engineering in China, vol. 6, no. 1, pp. 56-71,
2011.

[7] Z. F. Ye and B. L. Lu, “Learning Imbalanced Data Sets with a Min-Max
Modular Support Vector Machine,” Proceedings of IEEE International
Joint Conference on Neural Networks, pp. 1673-1678, 2007

[8] Qi Kong, Hai Zhao and Bao-liang Lu, “Adaptive Ensemble Learning
Strategy Using an Assistant Classifier for Large-Scale Imbalanced Paten-
t Categorization,” NEURAL INFORMATION PROCESSING, THEORY
AND ALGORITHMS, Lecture Notes in Computer Science, 2010, Volume
6443/2010, 601-608.

[9] X. L. Chu, C. Ma C, J. Li, B. L. Lu, M. Utiyama and H. Isahara,
“Large-scale patent classification with min-max modular support vector
machines,” Proc. of IEEE International Joint Conference on Neural
Networks, vol. 1, pp. 3972-3979, HongKong, China, 2008

[10] B. L. Lu, X. L. Wang, and M. Utiyama, “Incorporating prior knowledge
into learning by dividing training data,” Frontiers of Computer Science,
vol. 3, no. 1, pp. 109-122, 2009.

7

TABLE VI
RESULTS FOR EACH LABEL

Task Method Acc. (%) Precision (%) Recall (%) F1 (%)

A Liblinear-cdblock 95.88 82.77 79.58 81.14
M3-Liblinear 97.09 92.91 80.01 85.98

B Liblinear-cdblock 85.38 70.40 77.61 73.83
M3-Liblinear 90.52 88.28 74.17 80.61

C Liblinear-cdblock 93.73 77.41 78.06 77.73
M3-Liblinear 95.60 89.47 77.78 83.22

D Liblinear-cdblock 98.64 63.61 71.64 67.39
M3-Liblinear 99.22 89.56 68.17 77.41

E Liblinear-cdblock 97.40 77.94 78.76 78.35
M3-Liblinear 98.18 91.44 76.58 83.35

F Liblinear-cdblock 94.63 77.96 73.59 75.71
M3-Liblinear 96.07 89.19 74.44 81.15

G Liblinear-cdblock 88.43 82.64 80.94 81.78
M3-Liblinear 91.90 91.63 82.27 86.70

H Liblinear-cdblock 89.69 82.28 82.25 82.27
M3-Liblinear 92.55 91.84 81.59 86.42

[11] C. Ma, B. L. Lu, and M. Utiyama, “Incorporating prior knowledge into
task decomposition for large-scale patent classification,” Proceedings of
6th International Symposium on Neural Networks, LNCS 5552, pp. 784-
793, 2009

[12] Haibo He and Edwardo A. Garcia, “Learning from imbalanced
data,” IEEE Transactions On Knowledge And Data Engineering,
21(9):1263C1284

[13] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” JMLR, vol. 9,
pp. 1871C1874, 2008.

[14] Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang and Chi-Jen Lin, “Large
Linear Classification When Data Cannot Fit in Memory,” Proceedings of
the 16th ACM SIGKDD international conference on Knowledge discovery
and data mining, July 25-28, 2010, Washington, DC, USA

[15] Yang Yang, Bao-Liang Lu, “Protein Subcellular Multi-Localization
Prediction Using a Min-Max Modular Support Vector Machine,” Inter-
national Journal of Neural Systems, vol. 20, no. 1, pp. 13-28, 2010

[16] G. Tsoumakas and I. Katakis, Multi-label classifcation: An overview,”
International Journal of Data Warehousing and Mining, 3(3):1C13, 2007.

[17] Zhang, M.-L., Zhou,Z.-H.(2005), “A knearest neighbor based algorithm
for multi-label classification,” Proceedings of the 1 st IEEE International
Conference on Granular Computing.

[18] S. Lessmann, “Solving imbalanced classifcation problems with support
vector machines,” in Proc. of the Int. Conf. on Artifcial Intelligence (IC-
AI’04), Las Vegas, Nevada, USA, June 21C24, H. Arabnia, Ed., vol. I.
CSREA Press, 2004, pp. 214C220.

[19] M. Iwayama and A. Fujii and N. Kando, “Overview of Classification
Subtask at NTCIR-5 Patent Retrieval Task,” Proceedings of NTCIR-5
Workshop Meeting, 2005.

[20] Salton, G. and M. J. McGill (1983), “Introduction to modern information
retrieval,” McGraw-Hill, ISBN 0070544840

[21] BIGGS J, “Student Approaches to Learning and Studying,” Research
Mono-graph.[M].[S.l.]: Australian Council for Educational Research Ltd.,
Radford House, Frederick St., Hawthorn 3122, Australia., 1987.

